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ABSTRACT

In this paper, we present a data and an execution model
that allow for efficient storage and retrieval of XML docu-
ments in a relational database. The data model is strictly
based on the notion of binary associations: by decompos-
ing XML documents into small, flexible and semantically
homogeneous units we are able to exploit the performance
potential of vertical fragmentation. Moreover, our approach
provides clear and intuitive semantics, which facilitates the
definition of a declarative query algebra. Our experimen-
tal results with large collections of XML documents demon-
strate the effectiveness of the techniques proposed.

1. INTRODUCTION

XML increasingly assumes the role of the de facto stan-
dard data exchange format in Web database environments.
Modeling issues that arise from the discrepancy between
semi-structured data on the one hand side and fully struc-
tured database schemas on the other have received special
attention. Database researchers provided valuable insights
to bring these two areas together. The solutions proposed
include not only XML domain specific developments but
also techniques that build on object-oriented and relational
database technology (e.g., see [7, 1, 11, 15, 8, 16, 10, 2, 12]).

To make XML the language of Web databases, performance
issues are the upcoming challenge that has to be met. Data-
base support for XML processing can only find the wide-
spread use that researchers anticipate if storage and retrieval
of documents satisfy the demands of impatient surfers.

In this paper, we are concerned with providing effective tools
for the management of XML documents. This includes tight
interaction between established standards on the declarative
conceptual level like the DOM [18] and efficient physical
query execution. Starting from the syntax tree representa-
tion of a document, we propose a data model that is based on
a complete binary fragmentation of the document tree. This
way, all relevant associations within a document like parent-
child relationships, attributes, or topological orders can be
intuitively described, stored and queried. In contrast to gen-
eral graph databases like Lore [1], we draw benefit from the
basic tree structure of the document and incorporate infor-
mation about the association’s position within the syntax

tree relative to the root into our data model. References
such as IDREFs that escape the tree structure are taken care
of by views on the tree structure. Associations that provide
semantically related information are stored together in the
binary relations of the database repository. Along with the
decomposition schema we also present a method to translate
queries formulated on paths of the syntax tree into expres-
sions of an algebra for vertically fragmented schemas [4].

Our approach is distinguished by two features. Firstly, the
decomposition method is independent of the presence of
DTDs, but rather explores the structure of the document
at parse time. Information on the schema is automatically
available after the decomposition. Secondly, it reduces the
volume of data irrelevant to a query that has to be pro-
cessed during querying. Storing associations according to
their context in the syntax tree provides tables that contain
semantically closely related information. As a result, data
relevant for a given query can be accessed directly in form
of a separate table avoiding large and expensive scans over
irrelevant data.

Reservations exist that a high degree of fragmentation might
incur increased efforts to reconstruct the original document,
or parts of it. However, as our quantitative assessment
shows, the number of additional joins is fully made up for as
they involve only little data volume. Our approach displays
distinctly superior performance compared to previous work.

2. DATA MODEL AND ALGEBRA

XML documents are commonly represented as syntax trees.
With string and int denoting sets of character strings and
integers and oid being the set of unique object identifiers,
we can define a XML document formally (e.g., see [19]):

DEFINITION 1. An XML document is a rooted tree d =
(V, E,r,labelg, label o, rank) with nodes V and edges E C
V XV and a distinguished node r € V, the root node. The
function labelg : V — string assigns labels to nodes, i.e.,
elements; labela : V — string — string assigns pairs of
strings, attributes and their values, to nodes. Character
Data (CDATA) are modeled as a special ‘string’ attribute of
cdata nodes, rank : V — int establishes a ranking to allow
for an order among nodes with the same parent node. For
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<article key="BB88">
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Figure 1: XML document and corresponding syntax tree

elements without any attributes labela maps to the empty
set.

Figure 1 shows an XML document, which describes a frag-
ment of a bibliography, alongside its associated syntax tree.
The representation is largely self-explanatory, o; denote ob-

ject identifiers (OIDs) whose assignment is arbitrary, e.g., depth-

first traversal order. We apply the common simplification
not to differentiate between PCDATA and CDATA nor do
we take rich datatypes into account.

2.1 Preliminaries

Before we discuss techniques how to store a syntax graph as
a database instance, we introduce the concepts of associa-
tions and path summaries. They identify spots of interest
and constitute the basis for the Monet XML Model.!

DEFINITION 2. A pair (o,-) € oid X (oid U int U string)
is called an association.

The different types of associations describe different parts
of the tree: associations of type oid x oid represent edges,
i.e., parent-child relationships. Attribute values (including
character data, represented by vertices with label ‘string’,
that start from ‘cdata’ labelled nodes) are modeled by as-
sociations of type oid X string, while associations of type
oid X int are used to preserve the topology of a document.

DEFINITION 3. For a node o in the syntax tree, we denote
the sequence of labels along the path (vertex and edge labels)
from the root to o with path(o).

As an example, consider the node with OID o3 in Figure 1;
its path is bibliography = article = author. The correspond-
ing character data string “Ben Bit” has path bibliography —
article 5 author = cdata = string, where = denotes edges
to elements and % to attributes.

Paths describe the position of the element in the graph rel-
ative to the root node and we use path(o) to denote the type
of the association (+,0). The set of all paths in a document
is called the document’s path summary.

!We chose the name Monet XML Model because the home-
grown database engine Monet [4] serves as implementation
platform.

2.2 The Monet XML Model

As we pointed out at the beginning, the question central to
querying XML documents is how to store the syntax tree
as a database instance that provides efficient retrieval capa-
bilities. Given Definition 1 the tree could be stored using
a single database table for the parent-child relations (simi-
lar to [17]), another one for the elements labels and so on.
Though space effective, such a decomposition makes query-
ing expensive by enforcing scans over large amounts of data
irrelevant to a query, since structurally unrelated data are
stored in the same tables. Even if the query consist of a
few joins only, large data volumes may have to be processed
(see [10] for a discussion of storage schemes of this kind).

We pursue a rather different approach using the structures
defined above, i.e., storing all associations of the same type
in the same binary relation. A relation that contains the tu-
ple (-, 0) is named path (o), and, conversely, a tuple is stored
in exactly one relation.

DEFINITION 4. Given an XML document d, the Monet
transform is a quadruple M:(d) = (r,R, A, T) where

R is the set of binary relations that contain all associa-
tions between nodes;

A is the set of binary relations that contain all associa-
tions between nodes and their attribute values, includ-
ing character data;

T is the set of binary relations that contain all pairs of
nodes and their rank;

r remains the root of the document.

Encoding the path to a component into the name of the
relation often achieves a significantly higher degree of frag-
mentation than implied by plain data guides [11]. In other
words, we use path to group semantically related associa-
tions into the same relation. As a direct consequence of the
decomposition schema, we do not need to introduce novel
features on the storage level to cope with irregularities in-
duced by the semi-structured nature of XML, which are typ-
ically taken care of by NULLSs or overflow tables [8]. More-
over, it should be noted, that the complete decomposition
is linear in the size of the document with respect to running



bibliography = article = {{01,02), {01, 07)},

bibliography = article = author = {{02,03), {07, 010), (07, 012) },

bibliography = article = author % cdata = {{os,
bibliography = article = author = cdata % string = {{o4
bibliography = article = title = {{o2,

bibliography = article = title = cdata = {{os,

04), (010, 011), {012, 013) },

, “Ben Bit”), (011, “Bob Byte”), (013, “Ken Key”)},
0s), (07, 014) },
06), (014,015)},

bibliography = article < title = cdata % string = {{0s, “How to Hack”), (015, “Hacking & RSI”)},

bibliography = article < editor = {{o7,0s)},

bibliography < article > editor > cdata = {{0s,09)},

bibliography — article > editor < cdata > string = {{o9

, “Ed Ttor”)},

bibliography = article % key = {{o02, “BB88”), (07, “BK99”)}}

Figure 2: Monet transform M; of the example document

time. Concerning memory requirements, it is in O(h), h be-
ing the height of the syntax tree, in addition to the space
the binary relations in the database engine occupy, i.e., it is
not necessary to materialize the complete syntax tree.

PROPOSITION 1. The above mapping is lossless, i.e., for
an XML document d there exists an inverse mapping M, "
such that d and M; ' (M;(d)) are isomorphic.

A sketch of the proof of Proposition 1 is given in the ap-
pendix. Figure 2 shows the Monet transform of the example
document.

The Monet transform also enables an object-oriented per-
spective, i.e., object being interpreted as node in the syntax
tree, which is often more intuitive to the user and is adopted
by standards like the DOM [18]. Particularly in querying,
approaches that bear strong similarities with object-oriented
techniques have emerged. Given the Monet transform, we
have the necessary tools at hand to reconcile the relational
perspective with the object-oriented view.

It is natural to re-assemble an object with OID o from those
associations whose first component is o: e.g., the object
object(02) = {key{oz, “BB88”), author (o2, 03), title(o2, 05) }
is easily converted into an instance of a suitably defined
class article with members key, author and title. However,
XML is regarded as an incarnation of the semi-structured
paradigm. One consequence of this is that we cannot ex-
pect all instances of one type to share the same structure.
In the example, the second publication does have an editor
element whereas the first does not. We therefore distinguish
between two kinds of associations: (strong) associations and
weak associations. Strong associations constitute the struc-
tured part of XML — they are present in every instance of
a type; weak associations account for the semi-structured
part: they may or may not appear in a given instance. Ob-
jects o2 and o7 reflect this: o7 has a editor member whereas
02 has not. Therefore, we define the following:

DEFINITION 5. An object o is a set of strong and weak
associations {A1(0,01), A2(0,02),...}.

The next question we address directly arises from the mod-
eling of objects: How can we re-formulate queries from an
object-oriented setting to queries in relational Monet XML?

2.3 Execution Model and Algebra

The unified view provided by the Monet XML model ex-
tends directly to querying. For the relational layer, a mul-
titude of operators implementing the relational algebra, in-
cluding specialties intrinsic to vertical fragmented schemas,
have been proposed. Hence, we omit a discussion of tech-
nical issues concerning bare, relational query processing in
the context of vertical fragmentation and refer the interested
reader to [4] for a comprehensive overview.

More interesting is the actual translation of an OQL-like
query to match the facilities of the underlying query execu-
tion engine. We only outline the translation by an example
query. The process bears strong resemblance to mapping
techniques developed to implement object-oriented query in-
terfaces on relational databases; thus, we can resort to the
wealth of techniques developed in that field. See [5] for a
comparative analysis of different query languages for XML.

Consider the following query which selects those of Ben Bit’s
publications whose titles contain the word ‘Hack’; the se-
mantics of the statements are similar to [3]:

select p
from bibliography < article p,
p = author > cdata a,
p = title > cdata t
where a = “Ben Bit” and ¢ like “Hack”;

The query consists of two blocks, a specification of the el-
ements involved, which translates to computing the proper
binary relations, and constraints that define the actual pro-
cessing. For resolving path expressions, we need to distin-



guish two types of variables in the from clause: variables
that specify sets, p in the example, and variables, which
specify associations, a and t.

We collapse each path expression that is not available in
the database by joining the binary relations along the path
specification. This establishes an association between the
first and last element of the path. Finally, we take the in-
tersection of the specified elements. Matching the variables
against the running example, the from clause specifies the
following elements:

p= {027 07}7
assoc(p — a) = {(o02, “Ben Bit”), (o7, “Bob Byte”),
(o7, “Ken Key”)},
assoc(p — t) = {(o2, “How To Hack”),
(o7, “Hacking & RSI”)}

Queries containing regular expressions over paths directly
benefit from the availability of the path summary. Standard
methods for the evaluation of regular expressions can be
applied to the textual representation of the paths and enable
the immediate selection of the candidate relations.

The evaluation of the where clause is not of particular in-
terest in this context. Though processing of binary tables
differs from the conventional relational model in several as-
pects, these differences have no direct impact on our method.

3. QUANTITATIVE ASSESSMENT

We assess the techniques proposed with respect to size of
the resulting database, as well as querying and browsing the
database. As application domains we chose readily avail-
able XML document collection: the ACM SIGMOD An-
thology [13], Webster’s Dictionary [9], and Shakespeare’s
Plays [6].

We implemented Monet XML within the Monet database
server [4]. The measurements were carried out on an Silicon
Graphics 1400 Server with 1 GB main memory, running at
550 MHz. For comparisons with related work, we used a
Sun UltraSPARC-I1i with 360 MHz clock speed and 256 MB

main memory.

Database Size. The resulting sizes of the decomposition
scheme are a critical issue. Theoretically, the size of the path
summary can be linear in the size of the document as the
worst case — if the document is completely un-structured.
However, in practical applications, we typically find large
structured portions within each document. Table 1 shows
the database sizes for our examples in comparison with the
size of the original XML code. The third column contains
the number of tables, i.e., the size of the path summary.
The last column shows the complete time needed to parse,
decompose and store the documents.

It leaps out that the Monet XML version of the ACM An-
thology is of smaller size than the original document. This
reduction is due to the ‘automatic’ compression inherent in
the Monet transform (tag names are stored only once as
metainformation) and the removal of redundantly occurring
character data. For example there are only few different
publishers compared to the number of entries in general. In
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the decomposition, full entries of these fields can be replaced
with references; this is done automatically by the DBMS. We
can expect similar effects to occur with other decomposition
schemas, like object-oriented mappings.

Scaling. In order to inspect the scaling behavior of our
technique we varied the size of the underlying document.
In doing so, we took care to maintain the ratio of different
elements and attributes of the original document. We scaled
the ACM Anthology from 30 to 3 - 10° publications which
corresponds to XML source size between 10KB and 1GB.
Size of the database and time scaled linear in the size of the
XML document.

Querying. To test for query performance under scaling
we ran 4 queries consisting of path expressions of length 1
through 4 for various sizes of the Anthology. As Figure 3
shows, the response times for each query, given as a func-
tion of the size of the document, is linear in the size of the
database. Only for small sizes of the database, the response
time is dominated by the overhead of the database system.
Notice, both axes are logarithmic.



[ Documents

| size in XML [ size in Monet XML | #Tables | Loading |

ACM Anthology 46.6 MB 44.2 MB 187 30.4 s
Shakespeare’s Plays 7.9 MB 8.2 MB 95 45s
Webster's Dictionary 56.1 MB 95.6 MB 2587 56.6 s

Table 1: Sizes of document collections in XML and Monet XML format

L1 | Q1] Q2] Q3] Q4] Q5] Q6] Q7] Q8] Q9] QIO |
iA Monet XML | 1.2 | 56 ] 68 ] 80| 44| 40| 50| 50 | 88| 127
2A | SYU / Postgres | 150 | 180 | 160 | 180 | 190 | 340 | 350 | 370 | 1300 | 1040
iB Monet XML | - | 44 [ 56 ] 68 32] 3.7 38] 38| 76 115
2B [ SYU / Postgres | — | 30 | 10| 30 | 40 | 190 | 200 | 220 | 1150 | 890

Table 2: Comparison of response times for query set of SYU

Only few of the performance analyses published so far of-
fer the possibility to reproduce and compare results, which
makes meaningful comparison difficult at this time. The re-
sults we use to compare Monet XML against were reported
in [16] who implemented their algorithms as a front-end to
Postgres. In [16], the authors propose a set of 10 queries
using Shakespeare’s plays [6] as an application domain. We
refer to their approach as SYU in the following. In Table 2
we contrasted response times of Monet XML with SYU ob-
tained from experiments on the abovementioned Sun Work-
station.

The figures display a substantial difference in response time
showing that Monet XML outruns the competitor by up to
two orders of magnitude (rows 1A,2A). The times for SYU
include a translation of XQL to SQL that is handled outside
the database server. To allow for this difference, we addi-
tionally computed the response times relative to query 1 for
both systems separately, assuming that preprocessing costs
have a constant contribution. These figures exhibit actual
query processing time only (rows 1B,2B). Monet XML shows
an increase of processing time by less than 12 ms whereas
SYU is up to 1150 ms slower than its fastest response time.

An analysis of the figures exhibits the advantages of the
Monet model. While SYU store basically all data on a
single heap and have to scan these data repeatedly, the
Monet transform yields substantially smaller data volumes.
In some extreme cases, the query result is directly avail-
able in Monet XML without any processing and only needs
to be traversed and output. Another noticeable difference
concerns the complexity of queries: the straight-forward se-
mantics of the Monet XML model result in relatively simple
queries; conversely, the compiled SQL statements that SYU
present are quite complex.

The comparison with Lore [14] exhibited essentially the same
trends on small document instances. However, we were not
able to bulkload and query larger documents like the ACM
anthology as Lore requested more than the available 1 GB
main memory. In contrast, using Monet XML we engi-
neered a system functionally equivalent to the online DBLP
server [13] that operated in less than 130 MB.

Browsing a database. Our last experiments aim at as-
sessing the systems capabilities with respect to browsing.
As an example consider a typical query as it is run on the
Anthology server several thousand times a day: Retrieve all

conference publications for a given author. Clearly, the size
of the output may vary drastically and it is of particular
interest for a browsing session that response times are kept
low independent of the size of the answer.

Figure 4 shows both the total response time including tex-
tual rendering and response time of the repository. As ex-
pected, the time for rendering the output increases signifi-
cantly yet linear in the result size. However, the response
time of the repository increases at significantly lower rate.
This is due to the reconstruction of the associations in form
of joins rather than chasing individual chains of pointers.
Even for authors with a large number of publications the
overall response time is well under one tenth of a second,
which makes interactive browsing affordable. Also note that
the lower line in Figure 4 could also be interpreted as the
cost of constructing a view while the upper line additionally
includes rendering the view to textual XML.

The results presented demonstrate the performance poten-
tial of our approach deploying fully vertical fragmentation.
As the low response times show, reducing the data volume
involved in single database operations on the expense of ad-
ditional joins pays very well not only in terms of overall
performance but also when scaling is an issue.

4. CONCLUSIONS

We presented a data model for efficient processing of XML
documents. Our experiences show that it is worth taking
the plunge and fully decompose XML documents into bi-
nary associations. The experimental results obtained with
a prototype implementation based on Monet underline the
viability of our approach: the effort to reduce data volume
quickly pays off as gains in efficiency. Overall, our approach
combines the elegance of clear semantics with a highly ef-
ficient execution model by means of a simple and effective
mapping between XML documents and a relational schema.

Concerning future work, we will concentrate on exploring
possibilities of parallel processing and efficient handling of
multi-query workloads as found in typical interactive Web-
based information systems. As we have seen with own ex-
periments, there is also the need for a general, standardized
methodology that allows conclusive performance analyses
and facilitates comparisons of different approaches.
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APPENDIX

Proof of Proposition 1. Definition 4 introduces the
Monet transform M;(d) = (r, R, A, T) of a document d. For
a document d the sets R, A and T are computed as follows:

for elements:
R= [J

(o,;,oj',s)EE

for attributes including CDATA:

A= U

(04,51,52)Elabel o

[path(oi) = s)(0i, 05),

[path(o:) = s1](0s, 52),

for ranking integers:

r= U

(04,1)Erank

[path(o;) — rank](os, z)) ,

where F and label g are combined into one set
E= {(01,02,8)|(01,02) € E, s = labelg(02)},

label 4 is interpreted as a set C oid X string X string as
well as rank C oid x int, and [ezpr] means that the value of
expr is a relation name. To see that the mapping given in
definition 4 is lossless we give the inverse mapping. Given an
instance of the Monet XML model M (d) we can reconstruct
the original rooted tree d = (V, E,r,labelg, label a, rank)
in the following way (second-last(p) returns the second-last
component of path p).

. V.= {0i|(3R € R)(30; € 0id) : R(0i,0;)},

. E = {(Oi,Oj)|(HR S R) : R<0i70j>},

. T remains,

. labelp = {(0i,5)|(3R € R)(Jo; € 0id)(3s € string) :
R(0i,05) N second-last(R) = s},

5. labela = {(0i,s1,52)|(3A € A) : A{0i, s2) A last(A) =

81},

6. rank = {(0,1)|(3T € T) : T(0,3) }.

=W N =



